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In this study, all previously discovered stable periodic orbits
about the triangular libration points are tested on a planar
restricted four-body truth model, The truth model is an algorithm
developed from cquations used by T.A., Heppenheimer for colony
location used perturbation theory and the cquaticn of the center,
Only onec of the orbits, developed by Wheeler using a very re-
stricted four-body problem with Sun - Moon - BRarth circular motion,
is found to be relatively stable for at least twrnly years, Tt is
prograde about L4 having a period in resonance with the lunar
synodic month. Two other orbits, one similar to Wheeler's and
onc 180° out of phase found by Kolenkicwicz and Carpenter are

marginally stable.
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APPLICATION AND COMPARISON CF STARLE
PERIODIC ORBITS IN THE VICINITY OF
LAGRANGIAN POINTS L4 AND L5 TO
A FOUR~-RODY TRUTH MODLL
I. INTRODUCTION
Background

Foremost spacce scicentists have been looking in recent ycars
for existence of stable pcriodic orbits in which to place long-
term satellites for weather, observation, ceolonization, and
protection. The subjects of resconance and stability arc closely
related to the problem of evolution of the solar system. It is &
physically involving problem and the methods available to mathe-
matice today secm unsatisfactory to producce purce nonlinesr ways
of attack. The linearization process in both subjects is clearly
of doubtful significance, so that, ecven if very restrictive,
numerical solutions arxrc still the best and more valuable sources
of information. It is quite possible that we know now very little
more of the entire problem that was known to Poincare', with the
advantage that we can now computc much faster and with much more
precision.

Hardware developments like the Space Shuttle and 1nertial
Upper Stage bring the day closer when we will be able to use
these orbits. Studies have revealed a number of stable periodic
orbits which may exist to replace the unstable ncar-ecarth syn-
chronous orbits and give advantages such as a continuous

view of the North Pole, which are unobtainable today, The area of




of interest for these types of orbits is cislunar space, or the area
of space where satellite motion is affected by the gravitational
fields of the sun. Farth and Moon and any other forces caused by
the gravitational attraction of Jupiter, Earth oblateness, etc.
arc negligible. Many orbits have been found in cislunar space but
their periodicity and stability in most cascs have been determined
using three-body or restricted four-body equations rather than a
truth modcl..

Studies in the area of orbital mechanics near L4 and L5 have
increased in complexity over the years. Let M., M_ and M_ denote

1 2 3

three point masses such that Mfi4£li3. The masses move under the
influence of their mutual gravitational attractions; the force
between any two masses is inversely proportional to the square

of their distance and proportional to the product of their masses.
It is wcll known (Ref 27) that there are in this "three body
problem" five exact solutions in which the three masses maintain
a constant configuration which revolves with constant angular

velocity. An important specialization of the three body problem

is the restricted three body problem in which M3 is infinitesimal

and Ml and M2 move in circular orbits around their barycenter.

The smallness of M3 means that it does not influence the motion

of Ml and M2. For many purposes it is convenient to describe the

motion of M3 in a coordinate system which is attached to Ml and

Mz. In this rotating coordinate system the five Lagrange solutions

show up as five fixed points at which M, would be stationary if

3
placed there with zero velocity (i.e., zero velocity in the
rotating coordinates). 1If is further known that, in this rotating

2




coordinate systen, M3 may describe small periodic orbite about the
Lagrange solutions. Glyden therefore called the points which
correspond to the Lagrange solutions "centres of libration™; they
are also often referred to as "libration points" or "lLagrange
points."

The libration points are singular points of the differcntial
equations of motion in the restricted problem of three bodies,
they are also equilibrium points since the gravitational forces
on a mass placed in such a point are balanced by the centrifugal
force. Three libration points, the collinear points, are found
on the line connecting the two large masses; the cther two, the
triangular points, form equilateral triangles with the two large
masses. By linearizing the equations of motion Charlicr (Ref 9)
showed that there are two classes of periodic infinitosinal orbits
around the triangular libration points, namely those with short
period (period very nearly equal to that of the period of the two
large masses) and those of long period (the period depending on
the mass ratio of the large masscs). Each of these classes con-
sists of concentric, EOaxial and similar ellinses with semi-major
and minor axes in the ratio 2:1 for the short period orbits and a
larger ratio, again depending on the mass ratio, for the lcng
period orbits. Plummer in 1911 (Ref 31) considered Charlier's
problem in a more general format and from his results some addi=~
tional conclusions can be drawn, For a mass ratio of the two
large masses smaller than 1/27, both classes of orbits around the
triangular points can be expressed with trigonometric functions;
these points are therefore called stable libration points.

3




Furthermore, only one of the classcs of orbits around the collinecar
libration points can be expressed in trigonometric functions, the
other requiring hyperbolic functions; the collinear points are
therefore called unstable libration points.

The discovery in 1906 of the first of a group of asteroids
which appear to oscillate (or, in astronomical terms, librate)
around the Sun - Jupiter triangular libration points, gave further
impetus to the study of these motions. This first discovery was
called Achilles and since subseguent discoveries were also called
after heroes from the Trojan group. Brown in 1911 (Ref 4)
considered the long period orbits around the triangular libration
points by supposing finite amplitudes of libration and discussed
in some detail the dependence of period and orbit shape on
amplitude. In another paper (Ref 5) he discussed libration
orbits for mass ratios greater than 1/27. Willard in 1913
(Ref 54) discussed the short period orbits, again of finite
amplitude and computed a number of possible orbits, Whereas all
this work was bascd on the restricted problem of three bodies,
with the discovery of morc Trojans additional theories emerged
which attempted to take into consideration the actual physical
circumstances. Among the first contributions were thosc by
Linders in 1908 (Ref 28) and Smart in 1918 (Ref 39) and in
1923 (Ref 6) Brown published the explanation for his theory
which was accurate enough to compute the position of a Trojan
asteroid within a few seconds of arc. This theory was applied
numerically to Achilles by Brouwer in 1933 (Ref 2) and to
Hector, which has a particularly large libration amplitude, by

4
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Eckert in 1933 (Ref 17). Since this theory was numericgl it had to be

set up separately for each asteroid. A group theory was outlined by

Brown and Shook in 1933 (Ref 8) in which the interosting direct and

indircct effects by Saturn were also discussed, Herz in 1943 (Ref 21)

carried out some of the details of Brown and Shook's plan. Further

work concerning the motion of the Trojans was accomplished by Wilkens

in 1917 (Ref 50), 1918 (Ref 51), 1926 (Ref 52) and 1932 (Ref 53).
Thﬁriné in 1930 and 1931 (Ref 46) considered again the

problem of the long period motion, in particular the dependence

of the period on amplitude. His subsequent contributions in

1950 (Ref 47) were largely based on numerical work and his 1959

paper (Ref 48) was of particular interest because of the applica-

tion of an electronic digital computer. Thiring's claim of the

non-cxistence of long period orbits through any orbitrary point

was refuted by Rabe in 1961 (Ref 32) who made a survey of numeri-

cally computed long period libration orbits, expressed in Fourier

Series expansions. Rabe also discussed some aspects of the

stability of such periodic orbits and extended thesc studies and

his survey in 1962 (Ref 33); similar work in the same year (Ref 34)

was done on libration orbits for the Earth - Moon system. Rabe has

developed the idea that such periodic orbits should be used as

intermediate orbits for computation of real, nonperiodic orbits.

Stumpff in 1963 (Ref 41) reconsidered and refined Thiring's

theory, in particular with respect to the relations hetween long

period orbits with very large amplitudes around the triangular

libration points and nonperiodic orbits in the neighborhood of

the collinear libration points.
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The study of libration points in the Earth - Moon system was

initiated by Klemperer and Benedikt in 1958 (Ref 25). They arqued
that in analogy with the Trojan asteroids there are to be found in
the combinad gravitational field of the Earth and the Moon, two
areas in which natural or artificial bodics would move, while
maintaining a more or less constant configuration with the Earth
and the Moon. Again, as was the case with the Trojans, a natural
discovery of such a "cloud" near L4 (the libration point €60° ahead
of the Moon) was also reported. But since then, the discovery has
been refuted although dust particles may remain in the area tempo-
rarily according te Rooscen (Ref 35) and Wolff (Ref 56) in 1967.
More recently, intercst has been shown in the problem of the
influence of the sun on motion close to the libration points of
the Earth - Moon system as well as motion about the Earth and
the Moon itself. One possible model for the Earth - Moon - Sun
system was proposced by Su-Shu Huang in 1960 (Ref 22), who called
it the "very restricted four-body problem." Here the Earth and
Moon describe circular orbits reclative to one another, and their
center of mass describes a circular orbit around the Sun; all
these orbits are Keplerian, lie in a plane, and no perturbations
are considered. Using this model Huang studied the motion of a
fourth body of an infinitesimal mass in a similar manner as in the
restricted four-body problem. He concludes this model gives a
gencral idea of where the fourth body could or could not go under
given initial conditions when they are no longer very ncar the
Earth. Columbo in 1961 (Ref 10) considered the motion near L4
and LS under the influence of the Sun, and the possibility of

6




stabilizing it with a seolar sail; in another paper in 1962 (Ref 11)
he gave a numerical analysis of the influence of the Moon orbit's
eccentricity.

FEllis and Diana in 1960 (Ref 18) on a parellel tack precented
some nunmcrically computed ;ibration orbits in the restricted
problcic. This was extended by deVries and Pauson in 1962 (Ref 14)
by adding linecarized equations of motion relative to a stable
libration point in the restricted problem the principle effects of
a fourth body representing the Sun as it is related to the Barth
and Moon. Two lincar, second order differcential equations with
time varying cocfficients, were obtained which could be solved in
powers of the small parameter (mass of Sun divided by the culie of
the Earth - Sun distance). The first order solution and the most
significant parts of the sccond order solution were obtainced and
for a number of different initial conditions this presented a
reasonably close agreement with numerically integrated orbits,

It appeared to the authors that any so called “stability" was
strongly influenced by the Sun but it also appeared possible to
choose the initial configuration of Earth ~ Moon ~ Sun and initial
conditions of the small particle such that this influence was small
enough for a usefully long "libration life" to be possible. 1In a
subsequent paper by deVries in 1962 (Ref 15) the influence of the
Moon's eccentricity was discussed and it was found that, if the
Sun was introduced in the consideration of motion near Earth -
Moon libration points, the Moon's eccentricity would have to be
considered also. This was to play an important part in the four-
body model used in this thesis. Michacel in 1963 (Ref 29) discussed

7




orbit envelopes which depend on initial conditions, based on a
linearized analysis of the restricted problem.

Using Huang's four-body wmodel Cronin in 1964 (Ref 12) proved
that under certain conditions the fourth body has a periodic
motion, relative to a rotating coordinate frame, near ecach of the
libration points of the restricted three-body problem. Their
proof is based upon assumptions concerning the masses and distances
of the bodies which arc not satisfied by the Earth - Moon - Sun
system.

Siferd in 1965 (Ref 38) used Huang's model for the Earth -
Moon - Sun system to generate some periodic orbits. Using a nu-
merical integration procedure, the cquations of motion for the very
restricted four-body problem were integrated utilizing a digital
computer until some periodic orbits were obtained. By this
technique eight periodic orbits, in the numerical sense, with a
respect to a rotating coordinate system were found. Three orbits
were around the Earth, threce were around the lMMoon, and two were
around Ll. No periodic orbits near the triangular points were
obtained.

Danby in 1965 (Ref 13) investigated the influence of the Sun
on motion closc to the triangular points of the Earth - Moon system,
He felt the very restricted four-body model inadequate for his
investigation and therefore used a model in which the secular
perturbations of the moon due to the Sun were retained. The results
may be said to strengthen the hope that stable motion around the
triangular points of the EBarth - Moon system is possible. Other
investigators include Tapley in 1963 (Ref 43) and 1965 (Ref 44)

8




who used a model similar to the very restricted four-body model
except the Moon's orbit is inclined with respect to the Earth - Sun
plane, The equationﬂ of motion for a particle near the triangular
points of the P%ith —/;oon system are numcrcially integrated on a

digital Céjaf%or for various initial conditions, Onc result

indicateg’ that a particle placed initially at a triangular point:

(L4)Mith zero relative velocity has an envelope of motion, centered
at 14, going through a modc of expansion to a valuc of one Earth -
Moon distance for the major axis followed by a mode of contraction
to a value of 1/8 Earth - Moon distance for the major axis. The
envelope repeats this sequence several times during the 2500-day
period investigated. Feldt and Shulman in 196G (Ref 19) extended
the investigation of Taplcy to 5000 days and found that the
expansion - contraction of the envelope of motion did not persist
duc to a lunar encounter at approximately 4000 days. However,
Tapley and Schutz in 1968 (Ref 45) discuss the effect of the
constants used in the model and found that if more accurate values
were used, an expansion - contraction motion persisted for over

8000 days. Katz in 1975 (Ref 24) investigated numerical orbits of a
satellite placed near L5 but all the initial conditions used did

not have long-term stability.

Wolaver in 1966 (Ref 55) used a linearized four-body approxi-
mation to demonstrate that proper use of initial conditions could
aid stability of an orxbit in the vicinity of L4, Then Heppenhecimer
in 1978 (Ref 20) developed realistic models incorporating numerical
four-body perturbations in a three-dimcnsional analysis. Although
he worked on resonant orbits about the Earth, his model sufficiently

9
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mirrored the real world to be used in this thesis as the truth
model starting with the proper initial conditions for stable
periodic orbits about the triangular libration points discusscd by
various authors using more simple modcls.

In the scarch for stable periodic orbits aboul L4 and LS for
space colony candidates, four were found. Schechter in 1268
(Ref 36) concluded a stable, periodic coplanar orbit can exist
about the Sun perturbed Earth -~ Moon triangular point. The model
used was a three-dimensional analysis of the long-poriod featurces
of four-bhody motion about L4 where short-term period terms arc
removed from the Hawmiltonlan via von Zicpel's metlhiod resulting in
a slowly varving Hamiltonian. He obtained an orbit with a peried
of 28.6 days with a 1:1 resonance with the Sun and Moon in a
rotating coordinate frame. The elliptical motion is clockwise
about L4 and has a scmimajor axis of approximately €0,000 miles.
Schechter demonstrated that out-of-plane motion is not seriously
excited by the Sun and has a negligible effect on coplanar motion,
It is this coplanar motion which is the dominant factor as far as
stability is concerned.

But Kolenkicwicz and Carpenter in 1968 (Ref 26) confirmed
Schechter's orbit by numerically producing a somewhat larger orbit
having the same esscntial features of the orbit by Schechter. In
addition, a sccond similar orbit having a phase difference of
180° was calculated. It is believed that the discrcepancy in size
can be accounted for by diffcrences in the models used for lunar
orbit. If Schechter's lunar orbit was perturbed elliptical instead
of circular an orbit on the order of 50% larger would result from

10
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his equations.

Wheeler in 1978 (Ref 49) found a stable periodic orlit about
L4 in the restricted problem of four bod{gs. Tt exhilited a 1:1
commensurability with the Moon's synodic nonth and has a period
of 29.5305382 days. The cigenvalues were solved for and the
Poincarc' cexponents wc;c then detevmined to be pure imaginary.
This Maplicd lincar stability of the orbit in the restricted
four-body probloem.

Barkham, Modi, and Soudack in 1975 (Ref 1) found a 2:1
literal solution to the restricted four-body problem about L4 and
L5 and numerically gencerated periodic, four-body solutions that
agrecd to within 5% of the literal solution,

Last of all, Kamel and Breakwell in 1970 (Ref 23) found
similar resalts to Kolenkicwicz and Carpenter using the von Zeipel
technicque. Hore surveys of motion near the trisngular EBarth -
Moon libration points arc given by deVries (Ref 16), Steg and
deVries (Ref 40), Szebehely (Ref 42), and Schutz (Ref 37).

Problem and Scope

With space colonization on the horizon, it appears that the
most fundamental gquestions about motion near libration points are
those about the existence of periodic orbits and the stability of
such orbits. If stable periodic solutions exist, solutions of
differential equations at or near conditions of commensurability
may be used as intermediate orbits for the computation of non-
periodic orbits by perturbation analysis. In the restricted
problem of thrce bodies the existence of periodic orbits about the
triangular libration points is well established. This result

11




followed from the analysis of the lincarized cquations of motion

and sexved to exhibit the slebility of the triangulur confiquration,
as one of Lagrange's exact solutions of the restricted problem, only
in so far as the lincarization is valid, that is, only for infini-
testimal disturbances.  The apparent existence of non-infinitesinal
periodic orbits (Brown, Thilring, Rabe) followed either from the
analysis of higher order approximations of the differential
equations (but still not exact) or from numcrical work. It is

very difficult to derive mecaningful results by qualitative methods
and with the problem of libration orbits we may =till be in the

position of trving to comc to specific results Ly the study of

particular analytical oxr nuwaerical solubions.

Congidering the modern trends in the study of nonlincar
mechanics toward qualitative methods one may expect that any new
work on triangular libration points should concentratc on the
establishment of a proof of stability of libration orbkits, If
then a solution in the form of analytical expressions ¢f the k
coordinates as functions of time with an exhibition of integration
constants would be at all required, one should use periodic
orbits (whose existence would first be proved) as intermediate
orbits for the perturbation analysis., Two reasons discourage
one from the following approach. First of all, even though thg
past few decades have seen a significant development of methods
and thcorems in nonlincar mechanics there is still very little
known about systems of higher than second order. The methods
of the phase plane, so convenient and easily visualized for r
second order systems, must bc transferred to multidimensional

12




phasce space which introduces some formidable complications, j
Secondly, the few qualitative results which are known about the

triangular libration points specifically have been derived only

for the restricted three-body problewm which is really very special
since its Hamiltonian docs not. contain the independent variable
explicitly. On the othar hand, preliminary studies have shown
clearly that -in the use of the Larth - Moon libration points the
influcnces of the Sun as the fourth bodv and of the Moon's orbital
eccontricity are quite important. The Hamiltonian of such a problom
contains the independent variable in periodic terms of short and
long periods, and cspecially with periods commensuvable, or nearly
so, with the principle periods of the problem. Very little is

known at all about how certain qualitative results derived for

constant Hamiltonian could be transferred to a similar problem

with time varying Hamiltonian.

So finding a solution to the full analytical equations of
motion describing real world forces is not possible to date, The
best method to treat the problem of colony location is to first
develop reference colony orbits in the restricted three-body
problem. Such orbits are then studies in a very restricted four- :
body problem, wherein the motions of the Earth, Moon, and colony

are determined by numerical integration. This author has found

four orbits around L4 and L5 claimed to be stable and periodic
using very restricted four-body equations. This thesis will
attempt to test those orbits using a model more closely resembling

the real world to sce if the orbits are stable, and similar. If

.

they are not stable, this paper will attempt to explain why they

13




arec not.

The Lagrangian points L4 and L5 will be used as reference
points. They are the stable equilibrium points in the restricted
three-body problem for mass ratios less than ,0385. Here the
satellite remcins fixed relative to the other two bodies, if given
the correct initial vulociiy. However, in cislunar sprace L4 and LS
arc no longer cguilibriuwn points although we will still refer to
colony motion abmut these points. Any truth model used should
reduce to the rostricted three-body cquations of motion. L4 and
L5 passes a triangulor syemmcetry with cach other in rclation to the
Earth and Mcoon so that motion about L4 can be considered identical
to motion about L5. Exceptions to this arc whoen perturbative
effects of othoer planctary bodics are taken into account. Then
the motion about L4 will cxhibit slightly different solutions
comparcd to motion about L5. This author ncglects those minute
planctaxry perturbations so when L4 is referred to, it can bc

considered L5 as well.
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II, PROBLEM ANALYSIS

Assumptions

The stable periodic orbits about L4 found to date were computed
using very restricted four-body (VRFB) models. The VRFB models
neglect the important indirect effect of the Sun, i.e., the
gravitational effect on the motion of the Earth and Moon. Hence,
the results obtained from the simplified VRFB model cannot be used
to infer motion in the real world. That is, based on VRFB results,
it is not known whether the expansion - contraction of the envelope
of motion which exists in the VRFB models also exists in the real
world. Instead the nature of the solar influenced particle motion
near I4 will be studied by numercially integrating the equations
of motion over a number of'years using a model which closely
represents the real world.

The model used to test these orbits is one used by
T.A. Heppenheimer (Ref 20) in a paper locating space colonies
in high Earth orbits. 1In using this model the assumptions made
are:

1) The Sun, Earth and Moon are considered to be point masses.

2) The mass of the colony satellite is negligible compared
to the masses of the other three bodies and exerts no forces to
affect their motion.

3) The gravitational forces of other planets have a negligible
effect on motion and is ignored.

4) The motion of all four bodies is limited to one plane.

5) The motion of the Sun is taken to be an unperturbed ellipse
with respect to the Earth - Moon barycenter.

15




The satellite motion about L4 is far enough away from the

three other attracting bodies that the assumption of point masses

is supported. The strongest effect would be that of the Earth and
the largest term (J2 term) to hcve effect acts to the fifth

power of the distances from the Earth making this term negligible.
Consider Mac Cullagh's Formula (Ref 13) which gives the potential

for an attraoting body of any shape at a distance from the attracting

body which is large compared with the body's over-all dimensions.

Gm G
= —_— - = + -

R 2R3 (a B +C 3I)
where I = r2 sin 20 dm

and A+B+C=2 r?dnm
where A, B, and C are the p§inciple moments of inertia and I the
moment of inertia of the body about a line drawn from the center
of gravity of the body to the satellite, From this equation it
can be seen that the satellite does not have to be very many
times the radius of the body away before the second term on the
right-hand side becomes negligible.

The second assumption is obvious when you consider the
tremendous resources needed to orbit a satellite of any great
size. Even a large space colony would only have to be ten mileg
across to meet the needs of the people and one this size would
exert no influence upon the attracting bodies.

The effect of the other planets in the solar system on the
Sun will be taken into account by the eccentricity and formula
used for the Sun's motion. This will account for most of the
direct effect since direct effect upon the Earth and Moon will

16
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not be as great as upon the Sun. The indirect perturbations are
larger and tend to change the origin to the center of mass, or
barycenter, of the Sun and planets, Schutz and Tapley studied
the effect of other planets using an Ephemeris Model, Numerical
integration was performed for L5 with a fixed step size and
compared with results of integration neglecting the planets at
the same step size. The maximum change in position was 488 km
which was small enough to not significantly affect the motion
during 2500 days considered but it would have a significant effect
over longer periods. The effect is slight enough that a small
controller could offset its influence.

Out-of-plane considerations have been dealt with using
intrinsic solutions before. It is necessary to consider effects
due to the inclination of the Moon and satellite with respect to the
ecliptic. The lunar-orbit plane is inclined to the ecliptic by 5.14
degrees. Consequently, if the colony is initially in a coplanar
orbit, there are different rates of reqression of the lines of nodes
of the Moon (due to solar perturbations) and of the satellite (due
to lunisolar perturbations). Although both Moon and satellite
maintain nearly constant inclinations on the ecliptic, their
orbit planes mutually precess and, in time, are mutually inclined
by up to 10 degrees. However, as Danby discusses (Ref 13), the
angular momentum of the solar system is almost totally coplanar
giving the system an invariable plane. Any orbit within the
system that leaves this plane will be drawn back in and the
terms due to perturbation of the Moon's inclination are periodic.

Heppenheimer (Ref 20) estimates the optimal satellite inclination

17
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using phase equilibria and finds secular and inclination =~

type resonances to be small and stable,

Restricted Four-Body Equations of Motion

The general procedure followed to obtain real world orbits is
to use current numerical integration schemes on planar restricted
four-body equations of motion. In these equations, the motion of
the Sun is taken as an unperturbed ellipse with respect to the

Earth -~ Moon barycenter and the lunar motion is given by

.- X X =X x
+ = - +
X +t_m m_ m s s (1)
r 3 r 3 r 3
m ms s
- Y Yy -Y b4
+ = = +
In ¥ B Mg [ B_S = (2)
r3 r 3 r 3
m ms s
»
The motion of the satellite is given by
- X -X X X - x +x
+ - E +4 -
X, (1 u) xc m o] S _s H m m ‘
r 3 r 3 r 3 r 3 r 3
c cs s cm m
(3)
* - - +
G o+ Q-w y =-m /Y Y¥s & Yg Yo = Yo+ ¥
3 c S 3 __3 s 3 —_3
Te Tos Ts Tem m

(4)

et

where the subscripts m, s, and ¢ stand for the Moon, Sun, and
satellite, respectively. These equations are derived in Appendix

A and were used by Heppenheimer (Ref 20). They use a rectangular,

nonrotating, Earth - centered coordinate system. These equations
reduce to the restricted three-~-body problem is the perturbation of

the fourth body (Sun) is removed. The remaining terms are

2 o - 2 - 2 - :
rms (xm xs) + (ym ys) (Sun - Moon distance)
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x 22324 Y 2 (Moon ~ Earth distance)
m m m
2 _ 2 2 :

rs = xs + yS (sun - Earth distance)
E rc2 = xc2 + Ycz (Satellite ~ Earth distance)
A
S 2 2 - 2 - 2 ite - i
; L (xc xs) + (yc ys) (Satellite - Sun distance)
: 2 _ 2 2 . .
- = - - - d

rcm (xc xm) + (yc ym) (satellite Moon distance)

The following constants were employed by Heppenheimer:

Solar mass = m, = 329426,3 (5)
Solar semimajor axis = a_ = 389,0548

Solar eccentricity = e, = 0.01868

Solar mean motion = n_ = 0.0748013

The Sun lies initiallf at perihelion on the positive x-axis
with its true anomaly fs defined by Brouwer and Clemence's

equation of the center (Ref 3)

fs = nst + (2es - % es3 + g@ es + 12;8 es7) sin nst
+ (2 esz - %%-es + %%2 6) sin 2 n t
+ (%% 353 - %% ess + 2?2 7y sin 3 n_ t \
. A2 su-ggges>5m4nt !
B e - ) s e
{
* l%%% es6 sin 6 nst + %%%%% e 7 sin 7 nst :

(See Appendix B for derivation)
Dropping higher order terms

-La 3y g
fs = nst + (2es 3 ey ) sin nst

19

)
|
1
)

P F S AT




o P

+ (2) 012 sin 2 nvt + (}3) cra sin 3 not (6)
4 5 e g 12 -2 -

so that the Sun's coordinates are given by

%
b

H x -+ rps cos £

S m

S

99
i

sinf
s

H

+ r
.11 Ym I)E,

rp T oa (1 ~ 002)

1 + ¢ cosf
s s

Lunar motion is initiatced also on the positive x-axis. Refer
to Figure 1 for a diagram of the initial condition configuration.

These equations of motion arc cast into first-order fornm.
The initial conditions of the periodic stablce orbits found by
the various authors arc to be determined and transformcd into
the preceding four-body coordinate system. The cquations of the
four-body model are integrated using a fourth-order Adaws -
Bashforth predictor and Adams ~ Moulton corrector with a fourth-
order Runge - Kutta integrator as a starter. This entire
integration package, called ODE, was developed by Shampine and
Gordan at Sandia Laboratory. It automatically adjusts the order
and step size to control the local error per unit step in a
generalized sensc. It is the integration package used throughout
this report on the CDC 6600 and CYBER tie-in computers at the Air
Force Institutc of Technology.

Numerical cxperiments will not have to be performed to
determine a proper step size for integration of the cquations
over a given range. ODE will optimize the step size preventing
large round-off error duc to a small step size over a large

number of integration steps or truncation error due to a large
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Fig 1. 1Initial Condition Configuration for

Truth Model
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step size over many stepa.
Other constunts used by liep;enheiner which will be compared to

' constants

the other authors
Unit mass = 1 (iarth + Moon) ()
Lunar mass = op o= 0.0121%

Unit distance = 3.8441 » 108 n (Barth - Moon distance)

Unit time = 4.3484167 days
' T.U.

Unit velocity = 1023.17 m/scc

Unit acceleration = 0.00273 m/:soc2
motion of the Moon for a 27.321661 day sidereal pericd and

0.07480133 radion per time unit nean motion of the Snn for a

365.256365 day sidercal year.
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III. WHEELER'S ORBIT

Overview of Wheeler's Work

In Wheeler's study (Ref 49) the equations of motion for a
satellite near L4 in a planar restricted four-body problem are
derived and tested. A computer algorithm for finding periodic
motion is formulated and the initial starting point of the Sun,
Moon and Earth in line is used. Rabe's periodic orbits in the
three-body problem are used as starting conditions to begin
searching for four-body motion. He employs a linearization of
small displacements about the non-linear periodic orbit. The
periodic orbit found has a period in resonance with the lunar
synodic month, 29.5305882 days. Wheeler again calculates this
same orbit by slowly increa;ing the mass of the Sun from zero
to its real value and presents a synodic period orbit about L4.
He proves this orbit is generated mathematically from the L4 point
and not from Rabe's orbits. A successful stability analysis is
performed on the orbit with the orbit found to be stable,

Assumptions and Coordinate System

The assumptions made using Wheeler's very restricted four-body
model (Ref 49) include:

1) The Sun, Earth and Moon are considered to be point masses,

2) The mass of the satellite is negligible when compared to
the other three bodies and it, therefore does not affect their
motion.

3) The gravitational effects of the other planets in the

solar system can be ignored.
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4) The motion of all four bodies is limited to once planc,

5) The Farth and Moon move in circular orbits about their
barycenter at a constant rotation rate.

6) The Farth - Moon barycenter moves in a circular orhit
about the Sun at a constant rotation ralc.

The differcnce of Wheeler's model is obviously the assumption
of circular orbits instrad of the actual perturbed orbits for the
Earth, Moon and Sun. Later in this revort, Wheeler's orbit will
be reproduced using the truth model by removing the perturbative
forces from the Moon and karth orbit. These forces ncoed to bhe
accounted for to correctly moedel orbital motion in cislinar spocc.

Refer to Figure 2 for Wheeler's rotating coordirnatce systen.
The satellite orbiting about L4 remains in a rotating coordinate
system with its center at the Darth - Moon barycenter and the Moon
on the negative x-axis. So the coordinate system rotates with the
period of the Moon's synodic period and the entire systom rotates
in turn about the barycenter between the Earth - Moon barycenter
and the Sun. Its rotational rate is that of one sidercal year.
Constants

Pertinent constants used in Wheeler's paper are

Solar mass = mS = 328900.12 (8)

Mean solar semimajor axis = a_ = 388.82028

Solar eccentricity = e, = 0.0
Solar eccentricity is equivalent to the movcment of the

Earth - Moon barycenter about the Sun.
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Fig 2. Wheeler's Four-Body Configuration
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Solar mean motion = ns = ,0808489351
From Figure 2, 8 is normalized to 1,0 and so the entire rotation
of the Earth -~ Moon system with respect to an inertial frame

w=20+4a&

w 1.0 + .0808489351 = 1,0808489351 (9)
which is equivalent to lunar mean motion.

If the mass of the Moon is set to some arbitrary valve, u,
and the sum of the masses of the Earth and Moon is set equal to
1, then the masses of the Earth equals 1 - py. These values aféo
correspond to the normalized Earth - Moon distance between their
barycenter. In Wheeler's study

U = .0121396054

Conversion to Truth Model °*

The constants need to be converted to the truth model situation
and the initial conditions of Wheeler's orbit which will be used
to generate the truth model orbit must be transformed into the
coordinate system used for the truth model,

The initial conditions of Wheeler's 1/1 resonance orbit are

{(Ref 49) x

i}

- 0.72418782459 x = 0.07948061949 (10)

"

L}
"

y = 0.8,.68639689 v 0.22438007788

They were generated from the initial conditions at the L4 point

x = - 0.4878603946 x = 0.0 (11)

i

y = 0.8660254038 ¥ = 0,0
for ms = 0.0 (three-body problem) and increasing up to its present

value in a very restricted four-body problem. The initial con-

[P ——
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ditions (10) provide periodic motion in the restricted four~body
model for periods which arc integer multiples of the lunar synodic

month, Figure 3 describes Wheeler's initial condition configuration

with the Sun and Moon starting on the ncgative x-axis of the
rotating Bom coordinate system with angles 0 and o equal zero.
Wheeler's initial conditions must be transformed from &
rotating Earth - Moon barycenter frame to an Earth - centercd
inertial frame. Referring to Figure 4, the frames are initially
lined up and the distance from the origin of the truth model E {
to the initial starting point is

r € € 4, €
Lyse T Ip/n T Inse

where

e
= + > and ¥ = -
T ¥H TV S “B/E bE

corbining

_r_e=(x-u)g +ye (12)

P/E 1 —2

in terms of Wheeler's coordinates. For the velocity vector

v e = Vv e + v ¢
e T Yo/ T YnsE
e ea e C ea e
=v + v + + :
Top T Y XIpg T ¥ Y X Igyp
where
e . .
= +
Ypyp T F*E Y S
e _ . e =0
Yarp TV S
wea = 0
= -3
|
!
!
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substituting
e . . . :
= - +
Yop =083 x (mug) tke tye, +0e,x(xg +ye)
e . : . ° ’
!P/E = (x~ 8 vy) & + (y+86x-06yw e,

Equations (12) and (13) are in terms of Wheeler's coordinates

and must be rotated into truth model coordinates. The rotation

matrix is
a ae e
o = C) Ipp
a - cos 6 - sin O r e
Ip/E Ip/E

sin 6 cos 6
Multiply the rotation matrix times equations (12) and (13) to

get the coordinates in terms of the truth model frame.

x, = (x - ) &ds 0 - y sin 6 (14)
Y, = (x -~ u) sin 6 + y cos 6

ia = (x - éy) cos 6 - (y + 6 x - 6 p) sin @

?a = (x ~ éy) sin & + (Y + 8 x - ) H) cos 8

Since Heppenheimer's model initially positions the Sun and Moon
on the positive x-axis, the Sun and Moon starting positions will
be rotated 180° to the negative x-axis and 6=0°. In Wheeler's
frame & = 1 but there is a time difference between the two frames
which will affect the transformation of the velocity initial
conditions. In Wheeler's frame the period of rotation is one
lunar synodic month, 29.5305882 days, whereas in the truth

model frame the period of rotation is one lunar sidereal month,
27.32166101 days. So the slower truth model frame must have the
Wheeler velocities scaled down by a factor
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27,32166101 _ 1
29.5305882 1,0808489351

So the transformation equations (14) are now

x, =x-u (15)
Y, =Y

ka = - y + %/1.0808489351

Qa = x - § + y/1.0808489351

Substituting Wheeler's initial conditions (10) we obtained initial
conditions for the truth model

- 0.73632742999 % =-0.74215104336 (15)

]

X

]

y = 0.81568639689 ¥ =-0.52873127999

Wheeler's constant (8) will be used in the truth'model along
3
with his value of u and the transformed initial conditions. The

solar mean motion of Wheeler's model must be converted to the

slower truth model frame.

0.0808489351
1.0808485351 = 0.7480132 (17)

£ Im.‘:!
[l

The true anomoly of the equation of the center (6) will be
rotated to the negative x-axis by having ¥ or 180° added to it.
The Moon initial conditions will also begin on the negative
x-axis to correspond with Wheeler's scenario.

Verification of the Truth Model

The algorithm for integration of the equations of motion
and plotting the orbits formulated is given in Appendix C.
Wheeler's assumptions are applied to the truth model to verify

that the same orbit is reproduced. Wheeler's orbit of 1/1
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resonance is shown in Figure 5. Since Wheeler's assumptions involve
circular orbits the eccentricity of the Sun is zero (es = 0.0)

and the Moon's initial conditions are

"

X 1.0 x = 0.0 (18)
m m

(Gm + m )
m m e m

y = 0.0 y = 'E.= - 1,0 where u
r
= 1.0
The truth model equations of motion for lunar motion are simplified

by eliminating the perturbative effect of the Sun. Equations

(1) and (2) now become

X +x =0 (19)
m m
r 3
m
= . _
Yoty 0
3
X N

The equations for satellite motion (3) and (45 remain the same.

A period of rotation of the truth model is 21 or 6.2831853
radians or time units. But Wheeler's period occurs when the
bodies (Sun, Earth, Moon) are all lined up again which is a

longer period of time

29.5305882 days
27.32166101 days

2% x = 6.791174148 time units (20)

so the orbit period will be considered this number of time units
and the orbit found will be transformed in Wheeler's frame for
comparison and plotting purposes.

The equations of motion were integrated for over fifty

years and the orbit found (Figure 5) is identical to Wheeler's.

Figure 6 and 7 show three and 20 orbits respectively. Points
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along the periodic stable orbit were matched identically over
the same time period less computer round-cff in the f£ifth and
smaller digits. The orbit is in the same orientation about

L4 with an approximate semimajor axis of 80,000 miles and
semiminor axis of 40,000 miles, This is strong evidence that
Wheeler's equations for the very restricted four-body model are
correct and that the truth model from Heppenheimer is correct
and can be reduced to the three-body problem. The next step is
to apply the full model to Wheeler's orbit.

Truth Model Application

It greatly simplifies the four-body problem to start out
with the Sun, Moon and Earth lying on a straight line. Thus,
in order for periodic motion’to occur, the equations must be
integrated forward to the exact time when these initial con-

ditions occur again and when the satellite has, of course,

returned again to its original position about L4. This orbit
being examined returns after one lunar synodic month in the
very restricted four-body case. But as the perturbations increase
by adding more segments to the truth model the orbit will no
longer return to exactly the same spot or at exactly the proper
time. The synodic period will continue to be used as a basis
for looking at orbit positions to see how they are changed by
the more realistic forces of the four-body problem,

Perturbations were added one at a time to observe the
effects upon stability and periodicity noting that one effect

could offset part of another one when all the forces are inter-
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acting. The eccentricity of the Sun was input and the orbit
integrated for ten years. Figures 8, 9 and 10 depict the orbit
for one, three and twenty periods respectively. Note there is
only a slight perturbation away at each position compared to the
previous orbit. The change. from one orbit to the next is at
most 650 km anywhere in the orbit and the basic orbit shape or
position about L4 does not change after ten years. Orbits after
ten years are no more than 1000 km away from the first orbit and
tend to return to the starting orbit,

Next the perturbative effect of the Sun upon lunar motion
is returned to the problem by using equations (1) and (2). The
orbit is now highly perturbed changing shape somewhat and up to
4000 km off initial orbit position the second time around. The
orbit slowly begins to drift out of the quadrant of Wheeler's frame
after only thirteen months. This is not so damaging, but the
changing shape of the orbit shows little consistency in the
orbit, as Figures 11, 12 and, especially, 13 will attest., After
ten months the orbit approaches the Moon close enough to be
thrown out of the Earth - Moon system completely.

The truth model appeared to prove the Wheeler orbit
unstable. Analysis was made of the data to try to determine
the cause of the instability. The eccentricity of the Sun is
removed with little effect on the orbit, showing that the
direct influence of the perturbing Sun does not change the
stability of a periodic orbit with its small deviations., The
two terms of the Sun's effect on lunar motion were analyzed
and found to offset each other to such a degree that removing
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onc or the othor cav s the grbit to deteriorate ceven mopc
rapidly, Finally, the phase difference betweoen the Sun and
Moon is exanined in the truth model, This is thought to bhe
the primary cause for the loss of stability. A program is
written to minimize the diffcrence in the phase of the two
bodices by adjusting the solar ncan motion. If the Sun and
Moon were held in phase, this author beliceves the stability
would rcturn, The optimirzation was not very efficient but
after three cycles had irproved ctability 50%. The crbit is
indeed scnsitive to the Moon getting out of phase with the Sun.

During this phaso analysis an oversight came to light.
Although the lunar motion now includes perturbing forces of
the Sun to force the Moon out of circular motion, the lunarx
initial conditions arc still the circular orbit conditions
determined carlier (18). Elliptical initial conditions must
be found. Kolenkiewicz and Carpenter (Ref 26) developed a
model of the HMoon's orbit using a thrce-body system which is
explained in detail in the Chapter Pour. Since a perturbed orbit
was obtained using the two primary bodies, Earth and Sun, which
affect it, this orbit is considered accurate encugh to supply
initial conditions.

.

~ 0.99220573479 Xn = 0.0 (21)

It

X
m

ym = 0.0 Yo © 1.00990709043

When thesc perturbed lunar initial conditions were first input,
calculator accuracy to eight places werc used.

X, = 0.99220574 x = 0,0 (22)
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Y, = 0.0 9m = -1.01055416
Now the Moon and Sun are more in phase and the orbit is reasonably
stable. The orbit varies by no more than 5% over the first 24
months and the orbit shape or size does not change, It varies

by no more than 2% from orbit to orbit. Refer the Figures 14,

15 and 16, for plots of the orbit. The equations of motion are
integrated for over 100 years and the orbit moves slowly around
the Earth in a clockwise direction away from the Moon, returning
to the original orbit about L4 after 94 years with agreement to
within three decimal places. Refer to Figure 20 which plots cne
point on every fourth orbit for 100 years. It is sixteen years
before the orbit begins to leave this guadrant.

Even more surprising résults occured when the lunar initial
conditions from the computer (21) are input. Although these
initial conditions differ only in the fourth decimal place, the
orbit (FPigure 17, 18 and 19) now moves slowly in a counter-
clockwise direction toward the Moon and would again return to the
same orbit about L4 after 57 years. The orbit begins to leave
the quadrant after ten years but both of these orbits will move
into the Moon's vicinity and be thrown out of cislunar space,

The apparent drift of the orbit is extremely consistent. The
Wheeler frame for plotting the orbits is investigated to dis~
cover some reason for the apparent drift. The Wheeler frame
rotates at a constant rotation rate to coincide with the lunar
synodic month, The elliptical motion of the Moon and the
variations in its rotation rate is causing the reference frame
to drift rather than the orbit. A new algorithm is formulated
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Accurate Lunar Init. Cond., 20 Orbits
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to lock the reference frame to the Moon whereyver it is and koceps
it on the negative x—-axis. When this is done the Wheoler truth
model is found to be very stable with less than a 5% change in
position over 45 months and 10% over sceven years, It chanjen
from orbit to orbit no morce than 4000 km. The orbit slowly
wanders back and forth for over 100 years and never loaves the
L4 quadrant. The orbit slowly changes shape over the ycoars
depending on its position in the quadrent in relation to the

other bodies.

53

AT 2




IV. KOLENKIEWICZ AND CARPENTER'S ORBIT

Qverview

Kolenkiewicz and Carpenter (hereafter termed K & C) use a
restricted four-body model in which the three principle bodies are
periodic, coplanar, and obey the equations of motion and have no
mean orbital eccentricities (Ref 26). They investigated by
trigonometric series the possibility of a coplanar monthly
periodic motion in the general vicinity of L4. This investigation
of the Sun perturbed Earth - Moon triangular point yields, in
addition to a small unstable orbit, two similar but not identical
stable periodic orbits about 50% larger thar Schechter's stable
orbits, one synchronized with the Sun in its motion around L4;
the other 180° out-of-phase: The two stable orbits are periodic
with respect to the synodic system, make one loop about the
triangular point, and are elliptical in shape (see Figure 21).
The orbits have an approximate semimajor axis of 90,000 miles
and a semiminor axis of 44,000 miles. The major axis is
perpendicular to the line joining the Earth and L4. The particle
describing the orbits is synchronized with the Sun so their
angular positions almost coincide when the particle crosses one
of the axes of the ellipse.

Assumptions and Coordinate System

The assumptions made using K & C's restricted four-body
model include:

1) Sun, Earth and Moon are considered point masses,

2) The gravitational effects of other planets are ignored.

3) Only gravitational forces are considered.
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4) The motion of all four bodies is limited to one plane.

5) The Moon's orbit is perturbed by the Sun and Earth alone.

6) The Sun's orbit is perturbed by the Moon and Earth alone,

The only difference from the truth model is the unrealistic
orbit obtained for the Sun which gives it an approximate
eccentricity of only .0007313 instead of the actual value of
.0168. This should have little effect since removing the solar
eccentricity from the truth model on Wheeler's orbit gives a

; slightly larger orbit and a bit less stability.

1

f The coordinate system (Figure 21) is the same as the truth
model, an Earth - centered inertial system with the Moon and Sun
lying along the positive x-axis initially and the triangular
point lying 60° off that ak%is. There is another internal coordinate
system for locating the satellite in relation to the triangular

point rotating in advance of the Moon. 1Its origin is located at

from

Constants

f ¢ = 60°; r_ = a = 3.831841237 x 108m (23)
‘ Many of the constants are in the SI system and will remain
]

or be converted into SI until calculated by the computer but

values corresponding to units previously used will appear in

parenthesis where applicable.

mass ratios: m

mol
m 81. 30
e
Ms
o = 332958.087932061
e
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thercfore

Solar mass = ms = 328912.42 (24)

.01215067

=
i

also

Mecan solar semimajor axis = a_ = 149600 » 10% m

(= 388.8235 mean E - M distances)
Mean lunar scmimajor axis ~ am - 3.847487965 x 10% m
(= 1.0 mecan E ~ M distance)

Solar mecan motion = n = 129597742".38

Julian Centd}y

it

2.0 x 1077 radians
sec

-
)

.08084893 radians )
time unit

Solar mecan motion = nm 1732559352."56

Julian Century

= 2.66 x 10 ® radians
secC

(= 1.0808489 radians )
time unit

The mean motions correspond to the lunar synodic month.
Geocentric gravitational constant =

Gm_ = 398603 x 10? m3/sec?

since

m, = . 98784933

then

G = 4,0350283 x 10%
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Conversion to Truth Model

K & C's procedure used in obtaining a solution for the
Earth - Moon - Sun model as well as for the periodic triangular
point orbits is based on Musen's (Ref 30) method with the per-
turbations represented in trigonometric series with numerical
coefficients. The solutions of the equations are given in the
following form (see Figure 21)

r=Q0Q=a r +B80w (25)

where o and B are the components of the perturbations, I, is the
position vector in a fixed reference ellipse, and

@ = (1/n) (dr_/dt)

The mean motion, n, is given but can be calculated as a check

»
from Kepler's law which is n? a2 = u2 where a is the semimajor
axis of the reference ellipse. All the reference ellipses used

have zero eccentricity (circles) so r = a.

The functions o and B are represented by the trigonometric

series

a = % (ak" cosk® + aks sin k@) (26)

8 = (8°

s .
X coskf + Bk sin k8) (27)

where

0 = (nm - ns) t.

The basic inertial coordinate system matches the truth model

and needs no transformation. However, the initial conditions need

to be determined from the orbits of the Sun, Moon and satellite
and these are described using constant coefficients of a
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trigonometric series (Tables 1 ~ 4), The initial conditions of each
orbit can be determined from the coefficients at t = o.

Expanding on equation (25) and stating the velocity equation, g

= 2
=@+, +8 ,\/u 2, (28)
n r

+ = 2 7 [,2
E=la-Bu>lzx +IB+1+a] us a, (29)

3 n r

nr, o

where Eo is in the 3 direction in the truth model frame. The
values of o and B can be found from equations (26) and (27) for
t = o and 8 = 0° for the Sun and Moon and 6=60° for the satellite.

The equations for & and B are

S cosk8) (30)

. ® c .
V] (nm ns) io (- k ak sin k8 + k ak

]
_ ® _ c . + s
(nm ns) Z (- k Bk sin k6 k ak cosk®) (31)
k=0

™
]

Solutions for the motion of the Moon and Sun are found using
K & C's same four-body equations., Starting with the Sun constrained
to move in a circular, coplanar, Keplerian orbit with respect to
the Earth, the equations of motion are solved. Trigonometric
coefficients a and B describing the Moon's perturbed orbit are
thus obtained. The role of the bodies is reversed, the Moon's
motion is constrained to move in the perturbed orbit defined by
a and B, and the equations of motion for the Sun are solved. The
a and B, coefficients describing the Sun's perturbed orbit are thus
obtained. The roles of the bodies are reversed again and again,
each time using the latest acquired o and B coefficients of each,

Ultimately the values of a and 8 converge for each body. The
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Tablel Thrce-body sun solution, ¢ = 0°¢ Tuble 2 Three-body moon solution. » = 0*
k art® X 104 B X 108 k ae X 10¢ B X 108
0 0.045105 0.000000 0 ~906.915740 0.000000
1 30.949568 31.492851 1 287.606767 —609 076345
2 -0.004947 -0.005012 2 -7173.506563 10202.254341
3 0.047329 0.047319 3 -7.507078 7.212259
4 -0.0000035 -0.000005 4 6.028443 3.719334
3 0.000184 0.000183 5 ~0.003392 0.003816
[ 0.000000 0.000000 8 0.032434 0.027566
7 0.000001 0.000001 7 0.000011 0.000025
8 0.000187 0.000163
9 0.000000 0.000000
10 0.000001 0.000001
Table 3 Periodic orbit I, ¢ = 60°
k ar® X 108 ap®? X 108 8@ X 10 B4 X 10¢
n —=19171.565123 0.000000 T4753.542768 0.000000)
] ©O18TSOL.1350TS 1717314916 = 13120 709748 —377986. 165218
2 11131, 030603 ~ 3T NT205N 2352.545921 18027013465
3 ~2874. 472418 T37.565028 —037. 56477 ~23521.769547
4 582.134751 ~176.988257 173.574830 518.179570
3 —123.327707 47.337357 —46.872029 -110.607813
8 26.570848 -12.692022 12.244230 24.010789
7 -3.830083 3.271408 -3.092692 -35.355760
L] 1.327555 -0.827212 0.781737 1.245872
9 -0.314593 0.214693 —~0.205945 —0.299764
10 0.07554 -0.038253 0.056669 0.072270
11 -0.017829 0.016064 -=0.015680 -0.017002
12 0.004114 -0.004335 0.004214 0.003918
13 -0.000955 0.001136 -0.001100 ~0.000914
14 0.000230 -0.000296 - 0.000288 0.000222
15 =0.000057 0.0000S0 -0.000078 -0.000035
16 0.000014 -0.000022 0.000022 0.000013
17 ~0.000003 0.000006 -0.000006 --0.000003
18 0.000001 -0.000002 0.000002 0.000001
Table 4 Periodic orbit 11, ¢ = 60°
k ay® X 10¢ ax® X 10° B4 X 104 B X 108
0 -—18160.912624 0.000000 72212.688988 0.000000
1 -~ 183627.337659 ~-16818.088203 11392.917179 370250.263893
2 10460.900708 -~3371.790408 2116.289582 17696.741804
3 2715.813738 -648.117571 563.594410 2418.999900
4 544.831763 —152.630063 151.103035 487.952663
5 114.117818 ~40.353414 40.270023 102.700732
6 24.309814 -10.697742 10.3635¢1 22.014409
7 3.274431 ~2.716444 2.571492 4.851307
8 1.187793 -0.874483 0.637277 1.113552
9 0.278619 -0.171971 0.164972 0.265686
10 0.066360 -0.046021 0.044817 0.063541
11 0.015364 -0.012534 0.012274 0.014861 .
12 0.003576 -0.003330 0.003259 0.003409
13 0.000826 -0.000865 0.000838 0.000792
14 0.000198 -0.000222 0.000213 0.000192
13 0.000049 -0.000059 0.000057 0.000048
16 0.000012 -0.000016 0.000016 0.000012
17 0.000003 -~0.000004 0.000004 0.000003
18 0.000001 ~0.000001 0.000001 0.000001
60
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initial conditions of the Sun formed here will not be used because
the computed approximate eccentricity is .0007313 which is not close
to the actual ,0168 (Ref 20) since other forces obviously act on
the Sun to perturb its orbit besides the Earth and Moon.

The lunar initial conditions (21) are computed using the

coefficients from Table 2, equations (26) and (31), ro = a

bud
and
umz = an am3=4.0299 x 101" m3/sec2
Since um2 =G (mm + me) also, this was used as a check using values
from (24).

The satellite initial conditions for both orbits are computed

in a similar manner using the coefficients from Tables 3 and 4,
]

equations (26), (27), (30) and (31), r, = a from (23), 9=60°,

and u 2=Gm =G (m +m ) from (24) and the direction of r and
c e e [o] =)

W are

ro = a (cos © 51 + sin © 22)

- 2 o i
= (l/nm) %_ (-~ sin © 31 + cos O 32)
o

e

The initial conditions of Orbit I which is synchronized with

the Sun in its orbit about L4 are

X .75044754%9226 % = - .7370404960431 (32)

.8127310078686 y

]

.5259745433478

Yy

which is the same as Wheeler's transformed conditions (16) to two
places except the x value which is about one~hundreth off,

The initial conditions of Orbit II which is 180% out of

phase are

6l
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.07542634277321 % =-1,003173415668 (33)

X

y .9507111102549 y = .254983014774
Figure 21 shows the plotted coefficients of the Sun, Moon, and
the two orbits compared to Schechter's Reference I orbit (Ref 36),

Truth Model Application

Both orbits are run with the initial conditions and constants
stated for over 100 years. Orbit I (Figures 22, 23 and 24) begins
with an orbit the same shape but about 5% larger than the Wheeler

: orbit. The orbit once again changes shape very slowly and to a
slight degree as it moves around the Earth due to its orientation
to the body. But this orbit drifts faster than Wheeler's orbit.
The orbit moves approximately 35,000 km per revolution (month) and
begins to leave to quadrang after 17 months. Figure 25 shows a
particular point on the orbit each revolution for 34 years if the
satellite is not thrown out of the system by a close approach to
the Moon. Once again this apparent orbit drift is deceiving

because part of it is caused by the Moon drifting off the x-axis

of the Wheeler reference frame. When the problem is corrected, the
orbit continues to drift but much more slowly, averaging less than
20,000 km per revolution and remaining in the quadrant for seven
years. Within a year after leaving the gquadrant the satellite is
thrown out of the system by a close approach to the Moon.

Orbit II is integrated for over 100 years (Figures 26, 27
and 28). The first revolution is the same size as Wheeler's
truth model orbit but it does not close on itself, missing by

10,000 km. The orbit begins to depart the Wheeler frame 14

quadrant at about the same time as Orbit I, but unlike the first
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orbit, Orbit II rapidly leaves cislunar space after that, The

same correction for the Wheeler frame drift was made and the drift
rate of the orbit once again is found to be slower than anticipated.
The orbit drifts an average of 30,000 km per revolution and now
doesn’'t leave the quadrant for over 10 years instead of an apparent
19 months., Orbit II drifts faster than Orbit I but still has the
property of being relatively stable. The shape of the orxbit
indicates the possibility that with slightly different initial
conditions the orbit might come much closer to closing upon itself
and, thus, more stable. It is interesting to note that when both
orbits initial conditions are entered into the VRFB problem that

neither is periodic or very stable.
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V. BARKHAM, MODI, AND SOUDACK'S ORBIT

overview

Barkham, Modi and Soudack (hereafter B, M and S) offer a
theoretical solution to a four-body problem (Ref 1l). 1In their
model a small particle moves in the vicinity of two masses, forming
a close binary, in orbit about a distant mass. Unique, uniformly
valid solutions of this four-~body problem are found for motion near
both equilateral triangle points of the binary system in terms
of a small parameter £, where the primaries move in accordance
with a uniformly - valid three-~body solution. Accuracy is
maintained within a constant error 0 (£%) and the solutions are
uniformly valid as £ tends to zero for time intervals 0(g" 3.
Orbital position errors nea; L4 and L5 of the Earth - Moon system
are found to be less than 5% when numerically - generated periodic
solutions are used as a standard of comparison. Once again the
lunar synodic month is used and a 27 periodic stable orbit is
found which makes two cycles per month. It is a small orbit with
a semimajor axis slightly over 6000 km. The theoretical orbit was
checked with numerical solutions of four-body perturbation
equations of motion, from which the theoretical solution is
derived, simplified to three-body and with numerical solutions of
the theoretical three~body equations where three-body solutions
of the Earth and Moon orbits are used to simplify the problem.
The two orbits computed have very little difference and they differ

from the theoretical solution by no more than 5%.
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The theoxetical model assumed

1) Sun, Earth and Moon are considered point masscs.

2) The gravitational effects of othcr plancts are dropped.

3) The motion of all four bodies lies in one planc.

4) All perturbations on the satellite except those causcd
by the Sun neglected.

5) The Sun orbits in circular motion.

6) Distance to Sun is decreased from infinity to prescnt
distance.

As the Sun's distance increascs to infinity the problem reduces
to the threc-bedy problem and the particle contracts to the
libration point. The chccks to the solution try to show that the
Sun causes the primary perturbations and the satellite is relatively
insensitive to small variations in the orbits of the Earth and
Moon. This may be truc but indirect effects of the Sun upon the
Earth and Moon may cause large enough variations in the orbit to
affect long term stability. A circular Sun has only a slight
effect on the orbit.

The coordinate system is identical to Wheeler's system (see
Figures 2 and 29) with a rotating system with the lunar synodic
month about the Earth - Moon barycenter. The Moon and Sun start

initially on the negative f-axis or x-axis.

Constants

For the Earth ~ Moon - Sun system the following constants are

given (Ref 1)
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Solar mass - mS = 329794.6384
Mean solar semimajor axis = as = 389,17242

Solar eccentricity = 0,0

.0808489

n

Solar mean motion s

1.0808489

Lunar mean motion n

m

p_ = .01215032
m

Conversion to Truth Model

The solutions to the satellite and Earth orbits are given by
trigonometric series and formulas are given to convert Earth to
Moon coordinates. To find the initial conditions substitute t=o

into the series solutions. Initial conditions for the satellite

are
£ = -.48313894 £ = .01133797 (34)
n = .87089898 n = .0044541
and for the Earth are
£ = .01205487 £=0
n=0 n = .00023703

converting to the initial conditions for the Moon (Ref 1)

g -.98008937 E=0 (35)

-.019272

n=20 n
The same translation is used on coordinates (34) and (35) as for

Wheeler's system

r=(£-~u a +na,

E=(g-6ma +(h+8E-8wa

And the velocity components have to be scaled down for the time
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differcence in the periods of rotation used so divide by

1.0808489351, The satellite initial conditions are

x = .49528926 X = .86040910 (36)
y = .87089898 y = .4911683

and the Moon initial conditions are
X = ~-.99223969 % = 0 (37)
y =0 y = 1.0100701

Truth Model Application

The satcllite is unstable when the truth model is applied to
it. It slowly begins to orbit L4 and after half a period wanders
toward the Moon until being thrown out of cislunar space (Figure
30). The satellite travils 50,000 km in the first lunar synodic
month. When the Moon is locked to the x-axis to eliminate drift
the orbit is found to be more stable, only increasing its orbit
size 10% over the first 25 months. But the orbit shape is much
different making a small 3/4 orbit in half of a synodic month
and a larger 3/4 orbit in the next half of a synodic orbit.

This makes a very irregular orbit shape that would not lend

itself to an elcmentary rendevous with a satellite in this tight
orbit. The smaller 3/4 orbit has a semimajor axis of less than
4000 km. It is over seven years before the orbit of the satellite
drifts out of the quadrant and is thrown out of the system shortly
thereafter. Note that the orbit is unstable in VRFB system, The
initial lunar conditions computed by B, M and S are very close

to those calculated by Kolenkiewicz and Carpenter.
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V1. RESULTS

Discussion

wWith the four-body truth model, none of the orbits found are
periodic bat some do nearly close on themsclves and maintain a
period of onc¢ lunaxr Synodic month. Wheelexr's orbit is stable
enough to not require a control system to maintain it in the
orbit for at least 20 years {(Figures 31, 32 and 33). It will
stay in the vicinity of L4 for over a century and may never leave.
The transients are small cnovgh for space colonies but may be large
enough to affect pointing in a particular direction for military
applications. This would have to be investigated; if the ninor
perturbations could not be accurately predicted or therc are
fast variations, then a small controller might be needed to
maintain an exact orbit but it certainly would not have to be
large in size or expensive in fuel consumption.

Kolenkiewicz Orbit I was closc to Wheeler's but a one percent
error in initial conditions is enough to cause it to be marginally
stable (Figure 34)., The reason they didn't derive the same initial
conditions as Wheeler is probably due to the solar orbit used
which is unrealistically perturbed by the Earth and Moon alone.

The same holds for Orbit II, which is also marginally stable
(Figure 35). It the initial conditions were derived using a more
accurate model, a Wheeler orbit beginning on the opposite side
of the orbit might be found,

Barkham, Modi, and Soudack's orbit is marginally stable and
not suitable for military or civilian use. It is started too

close to L4 and it has been proved by Schechter and many other
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Crbit, 3 Orbits
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noted individuals that any particle near L4 will slowly be cjected
from the vicinity (Figures 36, 37 and 38), Both of the numerical
orbits derived to check B, M and S's orbit were not truth model
checks. 17The first was from the four-body perturbation eguations
but they were simplified by driving the distance to the Sun to
infinity. The other numerical solution was using a set of three
body equations formed in the same manner as the four-body which
cane up with the less than stable B, M and S orbit. A stability
analysis should have been performed.

The fact thalt Wheeler's orbit was stable in the very restricted
four-body model (circular Sun - Earth - Moon orbits) and X & C
and B, M & S's orbits were unstable gives evidence that the
VRFB model is a valid simplified model to test or scarch for
orbits which would be relatively stable in the real world.
Wheeler's orbit tends to support this. The truth model also
decreases the VRIFB orbit by 25%. Wheeler's orbit now has a
semimajor axis of 60,000 mi and semiminor axis of 30,000 mi.
Figure 39 shows the movement of one particular point on cach
orbit for a period of ten years showing that the orbit moves very
little in the quadrant.

It was also found during the analysis of forces on a satellite
about L4 that the phase between the Moon and Sun is the most
important factor in the stability of the satellite's orbit, The
Moon having its orbit perturbed by the Sun is the driving force.
Remember that Wheecler's orbit will exist only if the satellite
is initially injected into the orbit with the Moon and Sun in

phase on the x-axis.
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Recommendations

The truth model itself could be improved in accuracy using
Ephemeris Tables for accurate lunar and solar initial conditions,
using the most accurate constants to date from the various authors,
and using morc terms to higher powers for the cquation of center
which determines the scolarxr coordinates.

The next step would be to investigate out-of-planc considera-
tions and apply a third dimension to the truth model. If the small
transients need to be kept to a minimum for the nearly stable
Wheeler orbit, then an optimal plane of rotation for the orbit
necds to be found. It could be-in phase with the plane of the
Moon's or with the the plane of the Sun or somcwhere in between.

The 180° phasec orbit could be investigated using a Monte Carlo
analysis in a very restricted four-body model to see if a stable
orbit exists and then apply it to the truth model.

Last of all, look at attitute problems in the Wheeler orbit
due to the small perturbations of the nearly stable orbit. The
initial conditions could be varied slightly and expanded to see
if there is a small family of orhits that exhibit stability in

that region.
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APPENDIX A

DERIVATION OF HEPPENHEIMER'S EQUATIONS OF MOTION

Let a system on n bodies consist of point masses mi at Ei’

where i = 1,2,...n and the r, are expressed with respect to an

inertial frame of reference.
Let r,, = lr. - r.l
11 -1 —J

Then the equation of motion of m, is

n

m¥t,=-Gm, I m, (r,
i =i

11 j= 1

- r.)
=)
3

iy

(1)

Applying Newton's Law of Universal Gravitation, the force

F exerted on mi by mj is

The vector sum of all such gravitational forces acting

on the ith body is

Gm m ¢ my m2
R Y 3 (r
3 =1i Ty —2i

This equation does not contain the j

body does not exert a force on itself.

Simplifying
n
F =~-Gm, 2 m,
3#1 N
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-t

Comparing equation (2) to equation (1) with the assumptions

that the mass of the ith body remains constant and drag and other

external forces are not present, we obtain

n
. m,
£, =-G 'E J (Eji) (3)
=1 _ 3
j#l T3
If m, is a satellite and m, is a planet, writing equation (3)
for both
n
F=-c £ M () (4)
L] PR S P T
=2 _ 3
ji
n
F==-G I 4 (r.) (5)
) P R TP
J= r 3
j#2 32
And since r,, = r, - I, SO that I, =%, - L. Substituting

14
equations (4) and (5) into this last equation

n n
o m m,
p=-¢ 3 el 3 Z)
= .3 =2 _ 3 jl
#2732 3l
Expanding
r., = Gm T om .
=12 1 (512) + G .Z 3 (£j2)
r 3 =3 _ 3
12 32
n
- Gm G I m,
2 (x,y) - j=3 2 ; (£
21 T
Combining the first terms in each bracket since I, =" Iy
£ .=-G (m, + m) T em r r
=12 1 2 (512) - ‘23 jf =32 - =1
r 3 J= r 3 r 3

12 j2 j1




5-12 = - G (ml :-mz) (512) -~z G mj £2 - £_1 _ £l - x5
3 3=3 3 3
! 12 23 15

Consider an Earth - Moon - Sun system with a colony satellite

in the vicinity of the lagrangian peint L4 or L5. Refer to Figure
3 1. Assume the following:

1) Coplanar Orbits

it 2) Mass of the satellite is negligible compared to the

masses of the other bodies.

3) The Sun, Earth, and Moon are considered point masses.

E 4) Ignore effects of other planets, upon the satellite.

From Figure 1

= +
£s xs 21 ys 22
A r =o0
3 e
;
: - +
Zm xm 31 ym 52
i =
e Xa Ei + yc 22
] Ims © (xm - xs? g * (ym B ys) 2
Ies T (xc - xs) g * (yc - ys) =
3 = - -
£cm (xc xm) 21 + (Yc ym) 32
and
2 _ 2 2
= +
“m xm ym
¢
2 2 2
= +
rs xs Ys
2 2 2
= +
rc xc Yc




Fig 1.

Heppenheimer's Four-Body Configuration
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2 o - 2 - 2
o (xc xs) + (yc ys)

2 _ - 2 . - 2
¥ (xc xm) (yc ym)

Using the perturbative function eguation (&) for lunar motion

where LIPS = Em )
o
- G (m +m) r -r }r{'-r
r = - e m r -Gm m -s - —S
=m m s
r 3 r 3 r3
m ms s
Where constants mo = U
me =1-4y
G=1
So equations for lunar motion
X-DIR: % + m =-m *n -+ %
—_ s —_— (7)
v 3 3 r 3
m ms s
- : v  + = - - +
Y-DIR g ZE. ms Yy ys fi
3 » 3 3 (8)
m ms s
Using equation (6) for the colony satellite motion
o
f =-G({m +m) Gm r -r ,Eé*: r
— e ¢ r - s < =5 - -5
—c
r 3 r 3 r 3
c cs s
-Gm r -r tr’ r
m/ =< -m +,f€'— —m
r 3 r 3
cm m

Using the same constants and m, negligible compared to m,

s 4 _ _ _
ErQ-wr oo /575 K\ /AT Ins
3 3 3 3 - 3
r
rc cs rs rcm rm
X-DIR: X + 1 - = ~-m - X x -
R 52- xc s xc s+ _ 8\~ c *n + fﬂ
r 3 3 3 3
c r *©
cs s rcm rm
(9)
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Y-DIR: ¥, + l—:gﬁ' Yy, = - m ZF " Y5 4 ZE -u Yo " ¥n 4+ ¥n
e r 3 3 r 3 r 3
cs s cm m

(10)

Cast these four second order differential egquations (7, 8

9 and 10) into eight first order state equations

(xlﬁ (xnﬁ

x2 ym

x3 *m
R x

4> = 4m> (11)

5 c
Xg yc
b
X, *c
kxe / \).,c}
So that the following differential equations result

il = im

*2 - 9m

kg . K

k4 - fﬁ

ks Lk

. iG = i"c
i7 - fc

kg . T
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become
X) = X,

X2 T X
T R
3

r
m
X, = fZ_ - m
3
r
m
Xg = X,
Xg = x8
X, = - (1 -1
7 3
r
c
Xk =-(1 -y
s 3
r
c
wWhere
3 2 2
rc = (x5 + x6 )
3 2
rcs = [(xs - xs)
3 _ 2
rcm . [(xs xl)
. 3 = (x 2 + 2)
-] [ ys
3 _ 2 2
rm = (x 1 + x2 )
3 2
rms = [(xl - xs)

In terms of the state variables, the equations of motion

X, = X + X
i s ’s
3 r 3
Tms s
- +
*2 7 ¥ Zi
3 . 3
Ths s
"0 (¥ "%
r
cS
x6 - ms x6 - ]
3
r
cs
3/2
2, 3/2
+ (x6 Ys) ]
2, 3/2
+ (x6 xz) ]
3/2
3/2
2. 3/2

+ (x2 - Ys) ]

(12)

(13)

(14)

(15)

(16)

(19)

(20)

(21)
t22)
(23)
(24)

(25)

»
-

2]

»
N

[a]

]
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APPENDIX B

DERIVATION OF THE EQUATION OF CENTER

Sun coordinates are needed for the satellite equations of
motion in the truth model. Motion of the Sun is defined by the
equation of center.

A fixed system of rectangular coordinates with the origin in

the center of the Sun has equations (Ref 3) of motion

dt2 r3 9x
2
dy L,y =2R
2 3 E)'
dt r
2
=3 *”“3=%Pi
at r z

where m, = 1, m is the disturbed planet, m' is the disturbing

planet, p =G (1 + m) and

R = [(x'-x)2+(y'-y)2+(z'-z)2] 1/2 _ X x+y y+z

Perturbed coordinates are

X=X + Sx Y=y + GY z= 62
. = - + . > = A . - = .
X=X Gx y =¥, + 6 z2=4

with the x-axis directed toward the perihelion. Substracting the
equations of elliptic motion from (1) yields

2

X
-d~—2 (8x) +l'l-3 (x°+ 8x) - u -—9»3 =%§-
dt r rb

(same for y and x components)
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Develop the second item in the left~hand members in powers of

§r 8,08,
d2 . 3 uxo
Ex: —2(6x)+l3 (6x) - =E5= (x §x+8y) =G
[o] X
dat ro ro

and expand the partical derivatives of the disturbing function in

Taylor's series in terms of Ro

2 2
. = 9 3 J
Ex: Gx 55 . Ro Sx . Ry : Sy + ?xRoaz_ oz
o 3x X0 ¥ ¢ o
o
+ 9%Ro VoSt 4 3%Ro 5 v 32Ro s
Ix_ 9 x oy ' ° Y x_ dz ' °%
o o o °
% 3 2 % 2
+ul09 % -15 % ) 6x*+ 3% -15% Yo &x sy
2 5 2 7 5 7
r r r
o o o o
2
+3 % -15 %Y sy 3 X &
2 5 2 7 2 5
r r r
o o o

Integrating the expanded equations (first order approximation to
solve second order of disturbing forces, etc.) to find a formal,
explicit solution yields expressions containing the terms

§x = cx + coxt +C, cosL +C cos 2L +C cos 3L +

ix 2x 3x ot

+ slx sin L + S x Sin 2 L+ 8§ < Sin 3L + ...

2 3

(8y is similar)
where C and S are numbers, secular and terms factored by t2 or t3
are ignored. Time is the independent variable, Converting to a

true anomoly




1
v = =, (x° Sy - yQ 8x)
o

C + Cot + Cl cos L + C2 cos 2 L + C3 cos 3L + ..

+ s1 sin L + 52 §in 2 L + 53 sin 3 L + ...

Expressing a finite increment of v as a function or arbitrary

increments of the four elements w, n, e, & and wo -®=1L=nt

for the Sun as a disturbing body

_ 1 3 . 5 2 11 4 .
v=nt + (2 e + 2 e”) sin nt + (4 e - >4 e’) sin 2 nt

+ %% e3 sin 3 nt for 3rd order eccentricity

Use this to calculate the Sun coordinates starting at perihelion.

dx =r_ cos v dy =r_ sinwv
o )
therefore
= +
Xg = M x +7r_ cosv
= + si
Yo =My +tr sinv
where
r =A (L-e 2)/(l + e cos V)
s s s s
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APPENDIX C

COMPUTER PROGRAM TO CALCULATE ORBITS

IN THE RESTRICTED FOUR-BODY TRUTH MODEL

This appendix contains the computer routines used applying
Wheeler's and Kolenkiewicz and Carpenter's orbital data to the
truth model. Barkham, Modi, and Soudack's routine is not displayed
because of its similarity to Wheeler's routine. The computer
language utilized was Fortran Extended Version IV, and all work
was accomplished on the AFIT CDC 6613 and CYBER 74 computers,
Several comment statements have been employed to aid the reader
and smooth the flow of the program. ODE was the integration
package utilized in the program. For the integration steps, one
time unit corresponds to 4:3483774 days. Data cards were input
into the Kolenkiewicz and Carpenter routine containing the o and

B coefficients from Tables 3 and 4.
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PROGRAM GRADU Tl Tw P =1 FTN wef év '
Wheeler Truth Model with Subroutines
1 PROG- AV GRADU(INFUT=IF’,OUTPUT,T!FEiz1N9UI,TAFF6=0UTPU7,°L,'
EXTEF N4L F1

COMMCN NS,AS,ES,PZ‘S,iU,FI
REAL MSenSeMU
CIMENSION X(E).Xﬁ(i300),YH(1305),VX1(13D?),VYH(izbu),XL(13
«YC (13CC) » YXC(1337),VYC(L1302) ,TM(L2TI)
DIMENSION IWOWK (2 .7) yWOKKI(SUL)
OIMerFSION XH(13)f),YN(1335)’VXH(133J),VYH(iSLG)
OLMERSION AR(457) 4,88 43
1) MS=3286%01 412
AS=3(E.582028L3
ES=.01€8
NS=O'-‘7"iav13
MU=4{1213950% »
13 P1=3.141%926535
XMIN=1ie
Y4IN=1(oe
XMAX=(,
YMAX=o
X(1)==-,3%22L57379 1
X(2)=¢
X(3)=¢
X(w)==1s0u105618 1336
X(€)==,7363274293°¢
X(£)=z 81508633645 °
X(7)='X(E)*oﬂf94f}31§“c/1oL506453351
X(t)=X(5) +e2243330L7738/1.0828483354
NEQN= &
T=C
39 TOUT=2.u " PI*1,(:9.848933F1/1:8.3
GELT=T0U1
RELESR=4vlCCo 001
ABSEFR=ec3UCJIN0"1
IFLAC=1 ‘
35 KOUNT =1 |
1 TM (KCUNT) =T
X4 (KCUNT) =X (1)
YM (KCUNT) =X(2)
VXM (KOUNT )=X(3)
40 VYM(KOUNT)=X(3)
XC (KCUNT) =X(5)
YC (KOUNT) =X (€)
VXC (KOUNT )=X(7)
VYC(KOUNT)=X(5)
*5 A=ATAN(X(2)/X(1))
IF(X(1)eGTeleM) A=4+F1
IF(X(1) eLToledeANDeX(2)eGTebod) AzA+2.,*P1
FSENG*T4+(2%ES=, 2 *FS*® 2) S SIN(NS*T) +1.25 €5 s 2¥SIN(2#NS*T) +(1 !
oSS IASIN(3I*NS*T) .
33 FS=FS +P1
RSP=AS*(1,u=E3*%2)/(1,"+ES?*COS(F3))
XS=zMU* X (1) +RSP*COS(FS)
YS=MU*X(2) +RSP* SIMN(FS)
pRINT."oTs “’r’" xs: ",xs,u Ygl ”,Ys
+5 XN (KGUNT) =X () * COS(AI+Y (R)=SINC(A) +M)
YH (KOUNT) ==X (3) *SIN(A) +X(6)*COS (V)
VXH(KOUNT)=(X({8¢YW(KOUNT))‘100518453351'

i

[aV)
P

"~
N




3] IF(JFLLG.EQ 1) GO TI S
IF(IFLAG.NEL2) GO TO 2
KOUNY =KOQUNT +1
IF(KCUNT .EN.250) GD TO &
TYOUT=TOQUT +DELT
55 GO TO 1
& CONTINUE
FRINTI ®,4*"MUON OxIT™
00 & I=1,KOUNT
» WRITS(691ul) TMA(T)yXMUT)aYM(L)VIM(T) 4VYY(T)
79 3¢ FORMET (L2Xe"T= "y F1h o0,uXy"X= * 331841495 X,"Y¥= "y618.11,5X,"VX= *.
’515011,5X,"VY= ",Gi‘} «11)
5 CONT I NUE
PRINT ®,*"SATELL1TE OR®IV™
00 7 I=1,KOUNT
75 WRALITE (€9 3C2) TH(I) yXC(T)aYC(I),VLS(T) ,VYT(T)
304 FORMET (Lo X9 T= "y Flh 4Q,4X "Xz “y343411,5X,%Y= **yG18es11,5X," Xz .
*Gluel1y5X,y""VY= *y 5618 411)
7 CONTINUE
FRINT ®,*“WHEELSR DRI T™
83 B0 ¢ 1=1,4KOUNT
WRITE(£9573) TH(T)yXW(T) 3 YW(I)yVXR(L) VYW(T)
530 FORMAT (AUX9™T= ™yFi8e0,0X,"X= 95484031 ,5%," Y= 3051011 ,5%,"VX= ",
°Glc.o11,5>(,"VY= ",613 o11)
9 COnTINUE
&85 N=114
Ou 12 I=1,N »
AA(TI) =XW(I) '
B3 (1) =YW(])
12 CONT1NUE
33 MY =N
CALL FLOTSC(AL,3E,MM)
2 PRINT *,"1FLAG= *,IFLAG
3 CONTI NUE
SToP
35 END
SUSRIUTINE PLOTXY 14/74 - QPT=4 FTN
1 SUBKUGUTINE PLOT XY (Xg Yebig XMIN XMAL 3 YIIN,YMAXe1IST)
CIMcNSION X(N), YI{N)
CALL FLOT(30C9'1031‘3)
CALL PLOT (0eCy0e1,=3)
5 XFAC=10,07(XMAX =XMIN)
YFAC=10e o/ (YMAX =Y MIN)
D0 999 I=1,N
XX=(X (I)=XMIN)®*XFAS
YY=(Y (I)=-YMIN)®* YFAC
1J CALL SYMBOL(XXsYYy7e07533900ug~1)
999 CONTINUE
CALL PLOT (10690 ef1y=3)
IF (IST.EQed) RETURN
JJ=¢
15 CALL FLOTE(JJ)
KETURN
END

VYR KOUNTI=(X(3)=XY(KOUNT))* 1,583 0435358
CALL GCE(F19NIONyXgT 3TCUTHRELERR) FISERK9 IFLAGy WOKK 3 INORK)

(Y1}
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SURRIUTINE Fi

[
L¥ 1

23

25

31

T4/ 0PT =1 FIN Goltbis

SUPRCUTINE F1(T 4X4DX)
COMMON HS)AS)SS,HS’HU’pl
REAL MSynNSeMU 1
DIMENSION X(8),0%X(3)
F5=N5‘1*‘2’E$‘12;'33‘.$’.SIN(~S'r)*1-25‘EST’Z‘SIN(Z.NS.T’*(234
~> 2844 IXSIN(INSHET) !
FS=FS+P]

FSP=ASY (Leu~ES¥*2)/(1.7+ES*COS(F3))

XS=MU*X(1) +R39*CUS(FS)

YS=MU* X(2) +RSOPYSLNIFS)

RMS={ (X(1)=XS)*¥2+(X(2)~YS)**2)%+ .5

RM= (X (3)* 24X (2)~"2) **,5

FS=(XS*#24y3%%2)s 1,3

RC=(X (L)« *24X (e )" 72) »= 5

RES=((X(5)=XS)I**24(X (E)=YS)*¥2)*s 5
RONZ(IX(UI=XTL) )T 24 (X(E) =X(2))*+2)%r 5

DX (1) =X¢(3)

DX (2) =X ()

DX (3) ==X (1) /KM* 42 aMS = ((X(1)=XS)/IMS#" 34XS/-SV23)
DX (L) ==X (2) FR4* #3432 ((X(2)=YS) JAMS¥# 34YSIRS+*3)
X (>)=x(})

DX u)=X(3)

DX(?)=-(1-G-HU)“X(5)/&C*’3-HS’(((X(S)-MU'X(l)-&SF‘COS(FS))/RCS"

¢ ((MUAX (1) +RSO*GOS(FS) I /RS *3)) =4V (L IXLE) ~X (1)) JRCH** 3)
=+X (1) /FN~-*3)

DXLE) 5=(lau=rd)*X(B) /RO**T-MS® (((X(5) ~MUSL(2)=23P*SINC(FS) ) /RCS
=+L(MUAX(2) 4P STHIFS) ) /RSP € 3) ) =4U% (((X(8) =X (2) ) /JRCH* % 3)
“4X (2) JRM**3)

RETURN

END v

)

SUSRIUTINE PLOTSC T4/Te DPY =4 ' FTN

L)

11

15

SUBRGUTINE PLITSC (X, Y,#)
DIMENSION X(M), Y(M)

CALL FLOTS(3)

CALL FLOT (Ge9=34y~3)
CALL PLOT(G-,.S,‘3)

CALL PLOT(1.2094243)
CALL PLOT‘i.ZioQ.E,?)
CALL PLDT (76259947, 2)
CALL FLOT (74254 4%42)
CALL PLOT(1.255e342)
CALL PLOT‘io?SQi:G"3)
CALL SCALE(Xy34,%,1)
C“LL SCALE‘Y!30)F,1)
CALL AXIS(U.,J.,5HX-§XIS.-5,5.,3a,X(%#i),X(H+2))
CALL AXIS(0e0s g HY=AXTS 365809300 s¥{Me1),Y(M+2))
CALL LINE(X,Y,",i)'iys) -
CALL FLOTE(D)
RETUFN
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“olenkiewicz and Carpenter ‘iruth l.odel '

i FrOG AF GRADU(LIFUT= /87, 0UTPUT,TAF 32 Ul i -
EXTENAL F1
COMMUN 439459289 SyMUy "L g {14) 3™ {12) 4,37 213),y
Rkl MF,"S)”U’H3,’:1,M“”
CLrZ SiUn XU¥) g X (L3 27) g YMILS L)y V(17 7)Y
eYS(I3u() g VXCULT I )y VYO (1 2,50) o TH(LTL))
QI 2t SION TWORK (T 1) yWrRK(ZYH)
CIMEL ST XHW(L3 T Yy YH(I3 0, VXW(LTIY) VYU (T
DIMEL SI01, AAa (21 7)Y 4,30 (21 5)
14 11 FEaD(T 4*) A gAT 405,38
IF(ZCF(5) &M% ed) GC TC 2
CALL ERXSET(13,7)
M3=23Ib¢12442
£5=30 (4323°
<5 €Sz, 1¢3
NS=eu 743,13
MUzec 1l te?
PI=s3e41-1.9260 3
AC=3.2:8.122.”
2% ANz L79375040
ML= gSh 7702431 PIY 2( RS20 ¢ * 24027l 0 1600 T2
ENZ(2Se530w322/7(272T) ) 24401 o*B),
N3=en itUl20017 54707348
ELFH. =K (1)

e

25 BZjA=RC(1)
RDGT=
8NCT=( !

00 £ 1=1,13
ALFHE = ALPHA+AK(TI+1)2 20T (I*1,3471370) +A0(T+1) T
2 PCTA=EETZ 430 (I +L) SOS(T* 140471973) #3T (i+1) .
AICT=ACOT =AK(L+ 1) 472 (NZ=NL)*SINCI* 1,0 4/15/,7) +;
=COS{I21e.4i1%7%)
BOOT=ECOT=8C(I+1) 2T " (N7=N1)*SIN(T L, [ 47iSr ) +37 (.
«C0S(I1+¥1, :4/197F)
35 8 CONTINUE
ALFHLE=RLPHA%JT 30 01
9 TA=BETA®, 000001
ADOT=ACOT®WC(33¢ 31#IN 9
BOOTI=EBCO0T %4022
) PRINTZ2HALPHA ™ "Hy3TTA,™ “,A00T,™ "HN0T
X(1)21,0=eU779420521
X(2)=Coe
X(3)=Co.
MMU=( h3**2)*(AM*" 3)
“J XCu )= (b 857536 5=C/7NT4X (1)) * (HAUZAM) T >S5 NN/ -
CMUS(N3#+2)* (AC+*2) .
X(5)= (1+4aLPH2) * (AC/AMI " COS(La247L375) +3FTA (.7 ("
«((CMIZEC)®*4E) > (HN/744)- (=SIN(1.747137€))
X(e)= (1+ALPHA)* (AC/AM) *SIN(Ls0a71E73) #3ETA - (1.7 (!
23 e ((CMUZRAC) ™4 T) * (INZAM) " COS(1.UH7107)) i
XC7)= (ADOT=(DSTA/N) "(CHMUZAGC**3)ENN) r (AC/ZAMN)® : &
*COS(LeChTAITI+(RONT/ZINITNN) #24#8LPHL) ¢ ((ZHU/RTY - ,
“(=SIMN (1.4471976)) |
X(?)=X(7) /40353483351 b
23 XCe)= (ADOT=(BITAZHZ) *(CMUZAC**T)*NN) Y (AC/ZA V)
@SINCS o #7137E) +(EMIATZ7(3*NN) #4143 CH4A )+ ((CHU/ZAC)
=COS (1 414/ 1976) 108




=1

)

73

w
Y

(V9
(WA

(W9 ]

i

11)

i

11

3345

12

X(i)=X(8) /140303737751
PRIRT 245X 0 "X ()™ X5 “eX(39)y™ Xu "y¥X(Ff)
FRINT ¥ 4 X7 "y X (7)™ ¥8 "y,X(9)

NEICN=E
1=|,

TOUT=C ot *PI®2e¢ . #:83371/3C60 . 1

NELT=TCUT

ToLEl Rse IC20LICTD
A3SZi R=44dNA0 001

IFLAC =1
KQUNT =1
TMAIKLUNT) =T

Y (KCUMT) =X (1)
YMAKCUNT) =X(2)

VX (KLUNT ) =X (3)
VY M (KCURT )Y =X(4)

XC (KCUNT) =X (1)
YC AXOUNT) =X(r)

VXC(XQUNT)Y=X(7)
VYC (K CUINT ) =X(3)
A ATEN(X(2)/7X (L))
IF(X(1)elToevel)
IFUXC1) a53T ede e AMNX (2) ol Tal e 8) %=zi42,~P1

YA (KOUNT ) =X(U)* CTE(RAI+Y (€)FPSIN(A) +4)

YA (KCUNT) ==X (3)*SINCA) +X(S)*FCOS (V)
VXHW(KCUNT)=(X(7)=X(3)) COS(A) +(XI13) #X (3) =M1 =%STri(A)

VYW K QUNT ) ==(X(7) gX(B)I*SIN(A)+ (X (S +X(5)=UI*L0OS(A)

CALL CCu(F1yhZQNy Yy T 3TCUTyFELERPyARSERRJIFLAG,WIXKKyINIRK)

IF(IFLEGs )
KQUNT =KOUNT +1

TF(KCUNT e E€Qe254¢) GO TO &

TuUT= TCUT+DELT
GO TC 1
CONTINLE

FiRaNT®,"MCON QRSIT"
90 t I=1,KOUNT
WRITE (Egdid) TMUT)gXPLI) g YH(T) g UXM(I) 4 VYM(I)

FOFMAT(1.Xy"T=
=Glbel 1495%,"VY=
CONTI NUE

PRINT*,"“SATELL1ITE HRaTT™
N0 7 I=14KOUNT
WRITE (€9202) TMU(I)ogXC(I) g YOUI)gVXT(I)4VYC (D)

FORMET(L.Xy"T=
'Glboii,?;x ,"VY=
CONTINUEZ

FRINT*,"WHECL IR

CO 9 T=1,KOUNT

WRITE (£9593) TMII)gXMh(T) 3 YW(I)UXW(I),VYN(I)

FORMET (17 X,"T=

=G13¢1195Xy"VY=

CONTY NLE
N=114

D0 12 I=4,N
RA (T) =XW(I)
83 (1) =YW (I)
CONTI NUE

A=A +PT

GO TQ &

T FL e Xg"X= 95313411 ,3Xy"Y= My 518611 ,y5X,y VN
“9h13412)

Ty FLd ey Xe"X= "M951%411,5Xy Y= 35100115 %,y"VX= ":
"’qu i) ]

0rRIT™

My FlaaQy4Xy™X= T9313431,5Xy" Y= "y518411,5X,y"VX=
"9G19 J11)
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‘ 113 vMz
; CALL FLOTSC(2A,37,49)
2 FRINT* 3" iFLAG= "y TFLAG
G0 il 11
3 CCANTINLE
] 129 ey 5P
L END
:
H




Te e TR e

by

e e

XEEA

William D. Beekman was born on August 19, 1946, in Marion,
Ohio and was raised in Toledo, Ohjio where he graduated from
Roy C. Start High School in June of 1964, The next Fall he
entered the Air Force Académy in Colorado. He graduated from
the Academy in June 1968 with a Bachelor of Science degree
in Astronautics and Engineering Sciences.

He then complete Navigator Training at Mather Air Force
Base, California and served as Navigator in the F-4 at Macbill
Air Force Base, Florida and in South East Asia. After completing
175 combat missions, he was shot down and spent ten months as a
prisoner of war in Hanoi. After his repatriation, he attended
undergraduate Pilot Traininb at Williams Air Force Base, Arizona
and then served as a C-9A Pilot at Scott Air Force Base, Illinois.
During this time he earned a Master of Arts degree in Management.

In June of 1978, he was assigned to the Air Force Institute
of Technology resident School of Engineering at Wright-Patterson
Air Force Base, Ohio and began his studies toward a Master of
Science degree in Astronautical Engineering. After graduation,
he will be assigned to the Air Force Weapons Lab at Kirtland Air

Force Base, New Mexico as a LASER Systems Analyst,

Permanent Address: 4909 Burnham Ave
Toledo, Ohio 43612




SECURITY CLASSIFICATION OF THIS PAGE (When Data .Enurod)

READ INSTRUCTION ~——
REPORT DOCUMENTATION PAGE BEFORE compx.sﬂrrs!g\fom \
1. REPQRT NUMBER 2, GOVT ACCESSION RO 3. RECIPIENT'S CATALOG NiUMBER —
AFIT/GA/AA/79D-11
4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED |
APPLICATION AND COMPARISON OF STABLE
3 PERIODIC ORBITS IN THE VICINITY OF LAGRANGIAN MS Thesis
ki POINTS L4 AND L5 TO A FOUR~-BODY TRUTH MODEL S PERFORMING ORG. REPORYT NUMBER ——
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s) —
» WILLIAM D. BEEKMAN
B CAPTAIN
3 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM EL EMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
AIR FORCE INSTITUTE OF TECHNOLOGY

WRIGHT-PATTERSON AFB, OHIO 45433

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATYTE

December 1979
13. NUMBER OF PAGES

112

14, MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of this repcrt)

Unclassified

15a. DECL ASSIFICATION DOWNGRADING
SCHEDULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for Public Releasq; Distribution Unlimited

: '7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES Approved for Public Release; IAW AFR 190-17

Joseph Hlpps, E‘%

Director of Publi alrs, A F.I.T
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Periodic Orbits
Libration Points

L4 and L5

20. ABSTRACT (Continue on roveuo side If neceasary and identify by block number)

In this report,” all previously discovered stable periodic orbits about the
triangular libration’ points are tested on a planar restricted four-body truth
model. The truth model is an algorithm developed from equations used by
T.A. Heppenheimer for colony location used perturbation theory and the equation
of the center. Only one of the orbits, developed by Wheeler using a very re-
stricted four-body problem with Sun - Moon - Earth circular motion, is found to
be relatively stable for at least twenty vears. It is prograde about L4 having
a period in resonance with the lunar synodic month, Two other orbits, one

DD , 9% 1473  eoimion oF 1 Nov 88 15 oBsOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered’




rorEIn .

Unclasgified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

. [ similar to Wheeler's and one 180€ out of phase found by Kolenkiewicz and

Carpenter are marginally stable.

By
’

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

".‘f- hﬁ O

*
e



